Publications by authors named "W Vautz"

Plants emit a range of volatile organic compounds (VOCs) as a way of interacting with their biotic and abiotic surroundings. These VOCs can have various ecological functions, such as attracting pollinators, repelling herbivores, or may be emitted in response to abiotic stress. For the present dataset, we used gas chromatography coupled ion mobility spectrometry (GC-IMS) to analyse the VOCs emitted by different plant species under controlled conditions.

View Article and Find Full Text PDF

Premise: Daffodils (, Amaryllidaceae) are iconic ornamentals with a complex floral biology and many fragrant species; however, little is known about floral plant volatile organic compounds (pVOCs) across the genus and additional sampling is desirable. The present study investigates whether the floral scent of 20 species of can be characterized using gas chromatographycoupled ion mobility spectrometry (GC-IMS), with the aim of building a comparative pVOC data set for ecological and evolutionary studies.

Methods: We used a commercial GC-IMS equipped with an integrated in-line enrichment system for a fast, sensitive, and automated pVOC analysis.

View Article and Find Full Text PDF

(1) Background: Automated blood culture headspace analysis for the detection of volatile organic compounds of microbial origin (mVOC) could be a non-invasive method for bedside rapid pathogen identification. We investigated whether analyzing the gaseous headspace of blood culture (BC) bottles through gas chromatography-ion mobility spectrometry (GC-IMS) enables differentiation of infected and non-infected; (2) Methods: BC were gained out of a rabbit model, with sepsis induced by intravenous administration of E. coli (EC group; n = 6) and control group (n = 6) receiving sterile LB medium intravenously.

View Article and Find Full Text PDF

In all professional sports, performance pressure is high at the top level. Therefore, rules are defined and controlled to keep sports fair in accordance e.g.

View Article and Find Full Text PDF

The ionization source is the central system of analytical devices such as mass spectrometers or ion mobility spectrometers. In this study, a recently developed flexible microtube plasma (FμTP) is applied as an ionization source for a custom-made drift tube ion mobility spectrometer (IMS) for the first time. The FµTP is based on a highly miniaturized, robust and a small-footprint dielectric barrier discharge design with an outstanding ionization efficiency.

View Article and Find Full Text PDF