Publications by authors named "W Van Winden"

Constraint-based genome-scale models (GEMs) of microorganisms provide a powerful tool for predicting and analyzing microbial phenotypes as well as for understanding how these are affected by genetic and environmental perturbations. Recently, MATLAB and Python-based tools have been developed to incorporate enzymatic constraints into GEMs. These constraints enhance phenotype predictions by accounting for the enzyme cost of catalyzed model´s reactions, thereby reducing the space of possible metabolic flux distributions.

View Article and Find Full Text PDF

A novel fermentation process was developed in which renewable electricity is indirectly used as an energy source in fermentation, synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse gas CO . As an illustration, a glucose-based process is co-fed with formic acid, which can be generated by capturing CO from fermentation offgas followed by electrochemical reduction with renewable electricity. This "closed carbon loop" concept is demonstrated by a case study in which cofeeding formic acid is shown to significantly increase the yield of biomass on glucose of the industrially relevant yeast species Yarrowia lipolytica.

View Article and Find Full Text PDF

A powerful approach for the optimization of industrial bioprocesses is to perform detailed simulations integrating large-scale computational fluid dynamics (CFD) and cellular reaction dynamics (CRD). However, complex metabolic kinetic models containing a large number of equations pose formidable challenges in CFD-CRD coupling and computation time afterward. This necessitates to formulate a relatively simple but yet representative model structure.

View Article and Find Full Text PDF

Our quantitative knowledge of carbon fluxes in the long slender bloodstream form (BSF) Trypanosoma brucei is mainly based on non-proliferating parasites, isolated from laboratory animals and kept in buffers. In this paper we present a carbon balance for exponentially growing bloodstream form trypanosomes. The cells grew with a doubling time of 5.

View Article and Find Full Text PDF

In this study, a previously developed mini-bioreactor, the Biocurve, was used to identify an informative stimulus-response experiment. The identified stimulus-response experiment was a modest 50% shift-up in glucose uptake rate (qGLC) that unexpectedly resulted in a disproportionate transient metabolic response. The 50% shift-up in qGLC in the Biocurve resulted in a near tripling of the online measured oxygen uptake (qO2) and carbon dioxide production (qCO2) rates, suggesting a considerable mobilization of glycogen and trehalose.

View Article and Find Full Text PDF