Publications by authors named "W Urbach"

Molecular interactions are contingent upon the system's dimensionality. Notably, comprehending the impact of dimensionality on protein-protein interactions holds paramount importance in foreseeing protein behaviour across diverse scenarios, encompassing both solution and membrane environments. Here, we unravel interactions among membrane proteins across various dimensionalities by quantifying their binding rates through fluorescence recovery experiments.

View Article and Find Full Text PDF

Droplets made of liquid perfluorocarbon undergo a phase transition and transform into microbubbles when triggered by ultrasound of intensity beyond a critical threshold; this mechanism is called acoustic droplet vaporization (ADV). It has been shown that if the intensity of the signal coming from high ultrasonic harmonics are sufficiently high, superharmonic focusing is the mechanism leading to ADV for large droplets (>3 μm) and high frequencies (>1.5 MHz).

View Article and Find Full Text PDF

The viscosity of lipid bilayers is a property relevant to biological function, as it affects the diffusion of membrane macromolecules. To determine its value, and hence portray the membrane, various literature-reported techniques lead to significantly different results. Herein we compare the results issuing from two widely used techniques to determine the viscosity of membranes: the Fluorescence Lifetime Imaging Microscopy (FLIM), and Fluorescence Recovery After Photobleaching (FRAP).

View Article and Find Full Text PDF

Several investigations have suggested that ultrasound triggers the release of drugs encapsulated into liposomes at acoustic pressures low enough to avoid cavitation or high hyperthermia. However, the mechanism leading to this triggered release as well as the adequate composition of the liposome membrane remains unknown. Here, we investigate the ultrasound-triggered release of fluorescein disodium salt encapsulated into liposomes made of 1,2-dioleoyl--glycero-3-phosphocholine (DOPC) or 1,2-distearoylphosphatidyl-ethanolamine (DSPC) lipids with various concentrations of cholesterol (from 0 to 44 mol %).

View Article and Find Full Text PDF