Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFObjectives: This study sought to assess undergraduate students' knowledge and attitudes surrounding perceived self-efficacy and threats in various common emergencies in communities of higher education.
Methods: Self-reported perceptions of knowledge and skills, as well as attitudes and beliefs regarding education and training, obligation to respond, safety, psychological readiness, efficacy, personal preparedness, and willingness to respond were investigated through 3 representative scenarios via a web-based survey.
Results: Among 970 respondents, approximately 60% reported their university had adequately prepared them for various emergencies while 84% reported the university should provide such training.
Environmental DNA (eDNA) is revolutionizing how we investigate biodiversity in aquatic and terrestrial environments. It is increasingly used for detecting rare and invasive species, assessing biodiversity loss and monitoring fish communities, as it is considered a cost-effective and noninvasive approach. Some environments, however, can be challenging for eDNA analyses.
View Article and Find Full Text PDFCompared with their free-ranging counterparts, wild animals in captivity experience different conditions with lasting physiological and behavioural effects. Although shifts in gene expression are expected to occur upstream of these phenotypes, we found no previous gene expression comparisons of captive versus free-ranging mammals. We assessed gene expression profiles of three brain regions (cortex, olfactory bulb and hippocampus) of wild shrews () compared with shrews kept in captivity for two months and undertook sample dropout to examine robustness given limited sample sizes.
View Article and Find Full Text PDF