Publications by authors named "W T S Huck"

Understanding the molecular signatures of individual cells within complex biological systems is crucial for deciphering cellular heterogeneity and uncovering regulatory mechanisms. Here, we present a protocol for simultaneous multiplexed detection of selected mRNAs and (phospho-)proteins in mouse embryonic stem cells using spatial single-cell profiling. We describe steps for employing single-stranded DNA (ssDNA)-labeled antibo'dies, padlock probes, and rolling circle amplification to achieve simultaneous visualization of mRNAs and (phospho-)proteins at subcellular resolution.

View Article and Find Full Text PDF

Language models trained on molecular string representations have shown strong performance in predictive and generative tasks. However, practical applications require not only making accurate predictions, but also explainability - the ability to explain the reasons and rationale behind the predictions. In this work, we explore explainability for a chemical language model by adapting a transformer-specific and a model-agnostic input attribution technique.

View Article and Find Full Text PDF

New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease.

View Article and Find Full Text PDF

The forward design of in vitro enzymatic reaction networks (ERNs) requires a detailed analysis of network kinetics and potentially hidden interactions between the substrates and enzymes. Although flow chemistry allows for a systematic exploration of how the networks adapt to continuously changing conditions, the analysis of the reaction products is often a bottleneck. Here, we report on the interface between a continuous stirred-tank reactor, in which an immobilized enzymatic network made of 12 enzymes is compartmentalized, and an ion mobility-mass spectrometer.

View Article and Find Full Text PDF

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions.

View Article and Find Full Text PDF