Metal halide perovskites are attracting great interest for the fabrication of light-emitting devices encompassing light-emitting diodes, lasers, and scintillators. As the field develops, perovskite doping emerges as a promising way to enrich the material functionalities and enhance the luminescence yield and tunability. While Mn addition has been well explored, doping with lanthanides has received less attention, even though their intense and line-like luminescence is interesting for a wide range of applications.
View Article and Find Full Text PDFThe electroluminescence quantum efficiency roll-off in iridium(III)-based complexes, namely Ir(iqbt)(dpm) and Ir(iqbt) (iqbt = 1 (benzo[b]thiophen-2-yl)-isoquinolinate, dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) utilized as near-infrared emitters in organic light emitting diodes with remarkable external quantum efficiencies, up to circa 3%, 1.5% and 1%, are measured and analyzed. With a 5-6 weight% of emitters embedded in a host matrix, the double-layer solution-processed structure as well as analogous three-layer one extended by a hole-conducting film are investigated.
View Article and Find Full Text PDFThe electrochemical behavior of some polybenzofulvene derivatives bearing bithiophene (BT) or terthiophene (TT) side chains was investigated by cyclic voltammetry. Very interestingly, the presence of unsubstituted terminal thiophene moieties allowed poly-6-BT-BF3k and poly-6-TT-BF3k to be cross-linked by electrochemical procedures. Conductive films were obtained by electrodeposition from solutions of these polymers onto electrode surfaces through the formation of covalent cross-linking due to dimerization ( electrochemical oxidation) of the BT or TT side chains.
View Article and Find Full Text PDFPush-coating is a green and extremely low-cost process in which only few microliters of conjugated polymer solutions are used to produce thin films using capillary forces. Here, we adapt this fabrication technique to replicate self-assembled nanoporous structures on green and red light-emitting conjugated polymer thin films. These films display ring-like photoluminescence and are successfully integrated into polymer light-emitting devices as emitting layers.
View Article and Find Full Text PDFBecause of both its easy processability and compatibility with roll-to-roll processes, polymer electronics is considered to be the most promising technology for the future generation of low-cost electronic devices such as light-emitting diodes and solar cells. However, the state-of-the-art deposition technique for polymer electronics (spin-coating) generates a high volume of chlorinated solution wastes during the active layer fabrication. Here, we demonstrate that devices with similar or higher performances can be manufactured using the push-coating technique in which a poly(dimethylsiloxane) (PDMS) layer is simply laid over a very small amount of solution (less than 1μL/covered cm), which is then left for drying.
View Article and Find Full Text PDF