Purpose: To investigate the predictive value of MRI-based radiomics models for the recovery of visual acuity after 12 months in patients with acute phase MOG-optic neuritis(MOG-ON).
Materials And Methods: Clinical and MRI imaging data were collected consecutively from January 2021 to April 2022 from patients with acute stage MOG-ON, and the visual acuity of patients were followed up after 12 months. After stratified random sampling, patients were divided into training and test sets, and prediction models based on CE-T1WI, FS-T2WI, and combined CE-T1WI and FS-T2WI were developed.
Background: Depression, a prevalent chronic mental disorder, presents complexities and treatment challenges that drive researchers to seek new, precise therapeutic targets. Additionally, the potential connection between depression and cancer has garnered significant attention.
Methods: This study analyzed depression-related gene expression data from the GEO database.
Corn stover was used as raw material, and purification, oxalic acid treatment, oxidation treatment, and ultrasonic treatment were performed to realize the preparation of corn stover nanocellulose with low energy consumption. The effects of oxalic acid concentration (1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%) on the purity, morphology, crystalline structure and oxidation efficiency of corn stover cellulose during oxalic acid treatment were investigated. The controllable preparation of corn stover nanocellulose was achieved by changing the parameter conditions of ultrasonic treatment.
View Article and Find Full Text PDFEnvironmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFFerroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.
View Article and Find Full Text PDF