Background: Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying the bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are afflicted with this debilitating disease.
View Article and Find Full Text PDFMany investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔG) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are affiicted with this debilitating disease.
View Article and Find Full Text PDF