Publications by authors named "W Suhara"

The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay.

View Article and Find Full Text PDF

There is accumulating evidence demonstrating that HIF-1 functions as a key regulator of the adaptation responses to hypoxia in cancer tissues. To this evidence, we add that adaptation responses to glucose deprivation plus hypoxia are also necessary for the survival of tumor cells in the tumor microenvironment as cancer tissues are exposed to glucose deprivation as well as hypoxia. We found that adrenomedullin (AM), VEGF, Glut-1, Glut-3, and Hexokinase-2 among 45 hypoxia-inducible genes investigated were expressed at higher levels under glucose-deprived hypoxic conditions than under hypoxic conditions.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) acts as a ligand-gated channel that mediates neuronal signals by releasing Ca(2+) from the endoplasmic reticulum. The three-dimensional (3D) structure of tetrameric IP(3)R has been demonstrated by using electron microscopy (EM) with static specimens; however, the dynamic aspects of the IP(3)R structure have never been visualized in a native environment. Here we attempt to measure the surface topography of IP(3)R in solution using atomic force microscopy (AFM).

View Article and Find Full Text PDF

Transcription factor IRF-3 is post-translationally activated by Toll-like receptor (TLR) signaling and has critical roles in the regulation of innate immunity. Here we present the X-ray crystal structure of the C-terminal regulatory domain of IRF-3(175-427) (IRF-3 175C) at a resolution of 2.3 A.

View Article and Find Full Text PDF

Infections of bacteria and viruses induce host defense reactions known as innate responses that include the production of cytokines and chemokines. The production of type I interferon (IFN) is known to be induced by viral double-stranded (ds) RNA or bacterial lipopolysaccharide (LPS). Although important functions for the transcription factors NF-kappaB and interferon regulatory factor-3 (IRF-3) are indicated, the molecular signals leading to the activation of IFN genes have yet to be elucidated.

View Article and Find Full Text PDF