Publications by authors named "W Suchanek"

Novel α-alumina crystalline nanosheets are used for the preparation of alumina-carbon composites, in which the latter component is phenolic resin-based ordered mesoporous carbon. A unique feature of these composites is perpendicular orientation of ordered mesopores of the carbon to the (001) facets of nonporous α-alumina nanosheets accompanied by significant enlargement of these mesopores in comparison to those present in the bulk carbon.

View Article and Find Full Text PDF

The role of citrate washing on the physical and chemical characteristics of magnesium-substituted apatites (HAMgs) was performed. HAMgs were synthesized by a mechanochemical-hydrothermal route at room temperature in as little as 1 h, which is five times faster than our previous work. Magnesium-substituted apatites had concentrations as high as 17.

View Article and Find Full Text PDF

Magnesium-substituted hydroxyapatite (Mg-HAp) powders with different crystallinity levels were prepared at room temperature via a heterogeneous reaction between Mg(OH)(2)/Ca(OH)(2) powders and an (NH(4))(2)HPO(4) solution using the mechanochemical-hydrothermal route. The as-prepared products contained unreacted Mg(OH)(2) and therefore had to undergo purification in ammonium citrate aqueous solutions at room temperature. X-ray diffraction, infrared spectroscopy, thermogravimetric and chemical analyses were performed and it was determined that the purified powders were phase-pure Mg-HAp containing 0.

View Article and Find Full Text PDF

Crystalline carbonate- and sodium-and-carbonate-substituted hydroxyapatite (CO3HAp and NaCO3HAp) powders were prepared at room temperature via a heterogeneous reaction between Ca(OH)2/CaCO3/Na2CO3 and (NH4)2HPO4 aqueous solution using the mechanochemical hydrothermal route. X-ray diffraction, infrared spectroscopy, thermogravimetry, and chemical analysis were performed. Room temperature products were phase-pure CO3HAp and NaCO3HAp containing 0.

View Article and Find Full Text PDF

Several sintering additives for hydroxyapatite (HA) have been tested in order to enhance its sinterability without decomposing the HA and/or decreasing bioactivity and biocompatibility, additionally providing a weak interface for HA ceramics. The ion species of sintering additives were selected from those in the mineral constituents of hard tissues and bioactive glasses. After investigation of phase diagrams in the CaO-P2O5-additive systems, and analysis of physiochemical properties of the additives, several sintering aids for HA have been chosen.

View Article and Find Full Text PDF