Publications by authors named "W Segars"

Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.

View Article and Find Full Text PDF

Background: This Special Report summarizes the 2022, AAPM grand challenge on Truth-based CT image reconstruction.

Purpose: To provide an objective framework for evaluating CT reconstruction methods using virtual imaging resources consisting of a library of simulated CT projection images of a population of human models with various diseases.

Methods: Two hundred unique anthropomorphic, computational models were created with varied diseases consisting of 67 emphysema, 67 lung lesions, and 66 liver lesions.

View Article and Find Full Text PDF

Background: The rapid advancement of medical technologies presents significant challenges for researchers and practitioners. While traditional clinical trials remain the gold standard, they are often limited by high costs, lengthy durations, and ethical constraints. In contrast, in-silico trials and digital twins have emerged not only as efficient and ethical alternatives but also as a complementary technology that can extend beyond classical trials to predict and design new strategies.

View Article and Find Full Text PDF

Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid-structure interactions (FSIs). However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the valves are limited in their abilities to predict valve performance, capture fine-scale flow features, or use realistic descriptions of tissue biomechanics.

View Article and Find Full Text PDF

Purpose: Photon-counting computed tomography (PCCT) has the potential to provide superior image quality to energy-integrating CT (EICT). We objectively compare PCCT to EICT for liver lesion detection.

Approach: Fifty anthropomorphic, computational phantoms with inserted liver lesions were generated.

View Article and Find Full Text PDF