Background: The radiation exposure of nuclear medicine personnel, especially concerning extremity doses, has been a significant focus over the past two decades. This study addresses the evolving practice of NM, particularly with the rise of radionuclide therapy and theranostic procedures, which involve a variety of radionuclides such as Ga, Lu, and I. Traditional studies have concentrated on common radioisotopes like Tc, F, and Y, but there is limited data on these radionuclides, which are more and more frequently used.
View Article and Find Full Text PDFBackground: The use of lutetium-177 (Lu)-based radiopharmaceuticals in peptide receptor nuclear therapy is increasing, but so is the number of nuclear medicine workers exposed to higher levels of radiation. In recent years, [Lu]Lu-DOTA-TATE has begun to be widely used for the treatment of neuroendocrine tumours. However, there are few studies evaluating the occupational radiation exposure during its administration, and there are still some challenges that can result in higher doses to the staff, such as a lack of trained personnel or fully standardised procedures.
View Article and Find Full Text PDFBackground: Since it was first approved in Europe in 2016, the gallium-68 (Ga) radiopharmaceutical [Ga]Ga-DOTA-TOC has been widely used for imaging of somatostatin receptor (SSTR) positive tumours using positron emission tomography-computed tomography (PET/CT). Significant patient benefits have been reported, so its use is rapidly increasing. However, few studies have been published regarding occupational doses to nuclear medicine personnel handling this radiopharmaceutical, despite its manual usage at low distances from the skin and the beta-emission decay scheme, which may result in an increased absorbed dose to their hands.
View Article and Find Full Text PDFBackground: The MAVIG X-ray protective drape (MXPD) has been shown to reduce operator radiation dose during percutaneous coronary interventions (PCI). Whether MXPDs are also effective in reducing operator radiation during chronic total occlusion (CTO) PCI, often with dual access, is unknown.
Methods: We performed a prospective, randomized-controlled study comparing operator radiation dose during CTO PCI ( = 60) with or without pelvic MXPDs.
Background: Interventional cardiologists are occupationally exposed to high doses of ionizing radiation. The MAVIG X-ray protective drape (MXPD) is a commercially available light weight, lead-free shield placed over the pelvic area of patients to minimize operator radiation dose. The aim of this study was to examine the efficacy of the MXPD during routine cardiac catheterization, including percutaneous coronary interventions.
View Article and Find Full Text PDF