Publications by authors named "W Sawyer"

3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants.

View Article and Find Full Text PDF

Cancer engineering is an interdisciplinary approach that promises to confront the complexities of cancer and accelerate transformative discoveries by integrating innovative fields across engineering and the physical sciences with a focus on cancer. We offer a conceptual framework for the hallmarks of cancer engineering, integrating 12 fields: system dynamics; imaging, radiation, and spectroscopy; robotics and controls; solid mechanics; fluid mechanics; chemistry and nanomaterials; mathematics and simulation; cellular and protein engineering; kinetics and thermodynamics; materials science; manufacturing and biofabrication; and microsystems.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunotherapy faces challenges due to poor antigen recognition and an unfriendly tumor microenvironment (TME).
  • Researchers developed "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) that enhance the delivery and effectiveness of tumor mRNA antigens by activating specific immune responses in the body.
  • In studies with dogs and humans, RNA-LPAs showed promising results, improving survival rates and triggering strong immune reactions against tumors, suggesting they could be a breakthrough method for cancer treatment.
View Article and Find Full Text PDF

Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody.

View Article and Find Full Text PDF

We report the controlled synthesis of ultra-high molecular weight (UHMW) polymers ( ≥ 10 g/mol) via continuous flow in a tubular reactor. At high monomer conversion, UHMW polymers in homogeneous batch polymerization exhibit high viscosities that pose challenges for employing continuous flow reactors. However, under heterogeneous inverse miniemulsion (IME) conditions, UHMW polymers can be produced within the dispersed phase, while the viscosity of the heterogeneous mixture remains approximately the same as the viscosity of the continuous phase.

View Article and Find Full Text PDF