Publications by authors named "W Rzysko"

Controlling the valency of directional interactions of patchy particles is insufficient for the selective formation of target crystalline structures due to the competition between phases of similar free energy. Examples of such are stacking hybrids of interwoven hexagonal and cubic diamonds with (i) its liquid phase, (ii) arrested glasses, or (iii) clathrates, all depending on the relative patch size, despite being within the one-bond-per-patch regime. Herein, using molecular dynamics simulations, we demonstrate that although tetrahedral patchy particles with narrow patches can assemble into clathrates or stacking hybrids in the bulk, this behavior can be suppressed by the application of external surface potential.

View Article and Find Full Text PDF

Achieving the formation of target open crystalline lattices from colloidal particles is of paramount importance for their potential application in photonics. Examples of such desired structures are the diamond, tetrastack, and pyrochlore lattices. Here, we demonstrate that the self-assembly of tetravalent patchy particles results in the selective formation of cubic tetrastack crystals, both in the bulk and in the systems subjected to external fields exerted by the solid substrate.

View Article and Find Full Text PDF

Correction for 'Pursuing colloidal diamonds' by Łukasz Baran , , 2023, , 10623-10633, https://doi.org/10.1039/D3NR01771K.

View Article and Find Full Text PDF

Materials with disordered structures may exhibit interesting properties. Metal-organic frameworks (MOFs) are a class of hybrid materials composed of metal nodes and coordinating organic linkers. Recently, there has been growing interest in MOFs with structural disorder and the investigations of amorphous structures on surfaces.

View Article and Find Full Text PDF

The endeavor to selectively fabricate a cubic diamond is challenging due to the formation of competing phases such as its hexagonal polymorph or others possessing similar free energy. The necessity to achieve this is of paramount importance since the cubic diamond is the only polymorph exhibiting a complete photonic bandgap, making it a promising candidate in view of photonic applications. Herein, we demonstrate that due to the presence of an external field and delicate manipulation of its strength we can attain selectivity in the formation of a cubic diamond in a one-component system comprised of designer tetrahedral patchy particles.

View Article and Find Full Text PDF