Comp Biochem Physiol B Biochem Mol Biol
August 2022
The genome of the unicellular molluscan parasite Perkinsus marinus contains at least five genes coding for putative creatine kinases (CK), a phosphoryl transfer enzyme which plays a key role in cellular energy transactions. Expression and kinetic analyses of three of the P. marinus CKs revealed them to be true CKs with catalytic properties in the range of typical metazoan CKs.
View Article and Find Full Text PDFPhosphagen (guanidino) kinases (PK) constitute a family of homologous phosphotransferases catalyzing the reversible transfer of the high-energy phosphoryl group of ATP to naturally occurring guanidine compounds. Prior work has shown that PKs can be phylogenetically separated into two distinct groups- an arginine kinase (AK) subfamily and a creatine kinase (CK) subfamily. The latter includes three CK isoforms- cytoplasmic CK (CyCK), mitochondrial CK (MiCK) and three-domain flagellar CK (fCK).
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
June 2011
The genome of the choanoflagellate Monosiga brevicollis contains at least three genes for the phosphoryl transfer enzyme, arginine kinase (AK; EC 2.7.3.
View Article and Find Full Text PDFLombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2009
Annelids as a group express a variety of phosphagen kinases including creatine kinase (CK), glyocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and a unique arginine kinase (AK) restricted to annelids. In prior work, we have determined and compared the intron/exon organization of the annelid genes for cytoplasmic GK, LK, AK, and mitochondrial TK and LK (MiTK and MiLK, respectively), and found that these annelid genes, irrespective of cytoplasmic or mitochondrial, have the same 8-intron/9-exon organization strikingly similar to mitochondrial CK (MiCK) genes. These results support the view that the MiCK gene is basal and ancestral to the phosphagen kinases unique to annelids.
View Article and Find Full Text PDF