Publications by authors named "W Romero-Fernandez"

A coding variant in Phospholipase D3 ( ) increases the risk of Alzheimer's disease (AD). PLD3 is a lysosomal protein, and endosomal and lysosomal abnormalities are linked to AD; however, the role of PLD3 in lysosomal homeostasis and its implications in AD remain poorly understood. To address this knowledge gap, we conducted comprehensive studies integrating transcriptomics, proteomics, and cell biology approaches.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular β-amyloid (Aβ) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline.

View Article and Find Full Text PDF

Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear.

View Article and Find Full Text PDF
Article Synopsis
  • A 79-year-old woman with Alzheimer's participated in a Phase III trial for a drug called lecanemab, but was placed in the placebo group before later receiving the active drug during an extension phase.
  • After her third infusion, she experienced a seizure and MRI scans showed significant brain swelling and increased microhemorrhages.
  • Despite aggressive treatment, she worsened and died 5 days later, with autopsy results revealing severe cerebral amyloid-related inflammation and extensive brain damage linked to factors like the APOE4 gene.
View Article and Find Full Text PDF

Examination of healthy and diseased human brain is essential to translational neuroscience. Protein-protein interactions play a pivotal role in physiological and pathological processes, but their detection is difficult, especially in aged and fixed human brain tissue. We used the in-situ proximity ligation assay (PLA) to broaden the range of molecular interactions assessable in-situ in the human neuropathology.

View Article and Find Full Text PDF