Publications by authors named "W R Whittington"

Designing protective systems for the human head-and, hence, the brain-requires understanding the brain's microstructural response to mechanical insults. We present the behavior of wet and dry porcine brain undergoing quasi-static and high strain rate mechanical deformations to unravel the effect of hydration on the brain's biomechanics. Here, native 'wet' brain samples contained ~80% (mass/mass) water content and 'dry' brain samples contained ~0% (mass/mass) water content.

View Article and Find Full Text PDF

Unlabelled: This paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. Samples were tested in the rehydrated (35wt% water) and ambient dry (10wt% water) conditions along the longitudinal and radial directions under tension and compression.

View Article and Find Full Text PDF

This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.

View Article and Find Full Text PDF

We induced mild blunt and blast injuries in rats using a custom-built device and utilized in-house diffusion tensor imaging (DTI) software to reconstruct 3-D fiber tracts in brains before and after injury (1, 4, and 7 days). DTI measures such as fiber count, fiber length, and fractional anisotropy (FA) were selected to characterize axonal integrity. In-house image analysis software also showed changes in parameters including the area fraction (AF) and nearest neighbor distance (NND), which corresponded to variations in the microstructure of Hematoxylin and Eosin (H&E) brain sections.

View Article and Find Full Text PDF