Publications by authors named "W R Roeske"

Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors.

View Article and Find Full Text PDF

Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine-mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyperalgesia and tactile allodynia in rats.

View Article and Find Full Text PDF

Sustained morphine treatment has been shown to produce paradoxical pain sensitization (opioid-induced hyperalgesia) and also causes increase in spinal pain neurotransmitter, such as calcitonin gene related peptide (CGRP), concentration in experimental animals. Studies have also shown that cyclic adenosine-monophosphate (cAMP)-dependent protein kinase (PKA) plays a major role in the regulation of presynaptic neurotransmitter (such as CGRP and substance P) synthesis and release. We have previously shown that in cultured primary sensory dorsal root ganglion (DRG) neurons sustained in vitro opioid agonist treatment upregulates cAMP levels (adenylyl cyclase (AC) superactivation) and augments basal and capsaicin evoked CGRP release in a PKA dependent manner.

View Article and Find Full Text PDF

Tissue damage leads to pain sensitization due to peripheral and central release of excitatory mediators such as prostaglandin E₂ (PGE₂). PGE₂ sensitizes spinal pain neurotransmitter such as calcitonin gene-related peptide (CGRP) release via activation of cyclic AMP (cAMP)/protein kinase A (PKA)-dependent signaling mechanisms. Our previous data demonstrate that sustained morphine pretreatment sensitizes adenylyl cyclase(s) (AC) toward the direct stimulator, forskolin, in cultured primary sensory neurons (AC superactivation).

View Article and Find Full Text PDF

Background And Purpose: Long-term morphine treatment enhances pain neurotransmitter [such as calcitonin gene-related peptide (CGRP)] levels in the spinal cord. It has been suggested previously that increased spinal CGRP may contribute to sustained morphine-mediated paradoxical pain sensitization and antinociceptive tolerance. Previous in vitro studies from our group indicated that Raf-1 kinase-mediated adenylyl cyclase superactivation played a crucial role in sustained morphine-mediated augmentation of basal and evoked CGRP release from cultured primary sensory neurons.

View Article and Find Full Text PDF