Publications by authors named "W R MARTIN"

One of the major issues encountered in patients undergoing evaluation for Transcatheter mitral valve replacement (TMVR) is the risk of Left ventricular outflow tract (LVOT) obstruction. LVOT obstruction is a catastrophic complication of TMVR, the result of displacement of the anterior mitral valve leaflet (AML) toward the interventricular septum. Several strategies to mitigate the risk of LVOT obstruction have been described and include percutaneous laceration of the anterior mitral leaflet (LAMPOON), alcohol septal ablation, trans-atrial leaflet modification (SITRAL) and Balloon Assisted Translocation of Mitral Anterior leaflet to prevent LVOT obstruction (BATMAN).

View Article and Find Full Text PDF

TRANSVAC represents a long-running effort to accelerate the development of novel vaccines by integrating institutions from across Europe under a single collaborative framework. This initiative has empowered the global vaccine community since 2009 including contributing toward the development and optimization of vaccine candidates as well as the provision of new adjuvants, research protocols, and technologies. Scientific services were provided in support of 88 different vaccine development projects, and 400 professionals attended TRANSVAC training events on various vaccine-related topics.

View Article and Find Full Text PDF

Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS).

View Article and Find Full Text PDF

Serpentinizing hydrothermal vents are likely sites for the origin of metabolism because they produce H as a source of electrons for CO reduction while depositing zero-valent iron, cobalt, and nickel as catalysts for organic reactions. Recent work has shown that solid-state nickel can catalyze the H-dependent reduction of CO to various organic acids and their reductive amination with H and NH to biological amino acids under the conditions of H-producing hydrothermal vents and that amino acid synthesis from NH, H, and 2-oxoacids is facile in the presence of Ni. Such reactions suggest a metallic origin of metabolism during early biochemical evolution because single metals replace the function of over 130 enzymatic reactions at the core of metabolism in microbes that use the acetyl-CoA pathway of CO fixation.

View Article and Find Full Text PDF