Starch-derived hydrophilic malto-oligosaccharides (Glc, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glc-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications.
View Article and Find Full Text PDFThis study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.
View Article and Find Full Text PDFObjective: The combination of pembrolizumab and chemotherapy has demonstrated notable clinical advantages in improving overall survival than chemotherapy alone for patients with untreated advanced pleural mesothelioma. The purpose of this study was to assess its cost-effectiveness.
Materials And Methods: A Markov state-transition model was constructed using data from the IND227 phase 3 randomized clinical trial.
Background: Molecular-clinical prognostic models for Myelodysplastic syndromes (MDS) offer more accurate prognosis predictions, yet existing models often overlook the heterogeneity of mutational profiles against the cytogenetic background. Moreover, how to apply these models in regions where large panel NGS is unaffordable remains a significant challenge to be addressed.
Methods: A total of 237 NK MDS patients from our center were used as the training set to screen for key variables and develop a prognostic model with overall survival (OS) as the endpoint.
A novel glucomannan, named ATSW-1, was obtained from Allii Tuberosi Semen by ion and gel permeation chromatography purification. Its structure was characterized using high-performance chromatography, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. The in vitro immune activities of ATSW-1 were examined using the Cell Counting Kit-8, the neutral red phagocytosis assay, and the secretion of related cytokines.
View Article and Find Full Text PDF