An assessment of elastase-substrate kinetics and adsorption at the solid-liquid interface of peptide-bound resin was made in an approach to the solid-phase detection of human neutrophil elastase (HNE), which is found in high concentration in chronic wound fluid. N-succinyl-alanine-alanine-proline-valine-p-nitroanilide (suc-Ala-Ala-Pro-Val-pNA), a chromogenic HNE substrate, was attached to glycine-cross-linked ethoxylate acrylate resins (Gly-CLEAR) by a carbodiimide reaction. To assess the enzyme-substrate reaction in a two-phase system, the kinetic profile of resin-bound peptide substrate hydrolysis by HNE was obtained.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2003
Occlusion and elasticity were combined in a novel cotton-based alginate dressing containing a nontoxic elastase inhibitor. Cotton gauzes were modified with a textile finishing process for incorporating alginate to yield a dressing material that retains elasticity while enhancing absorption. The algino-cellulose conjugates were formed through citric acid crosslinking of cellulose and alginate.
View Article and Find Full Text PDFCotton dust associated with high pulmonary function decrements contains relatively high levels of mannitol. In this study, cotton leaf and bract tissue and dust isolated from cotton leaf tissue were examined by optical microscopy, scanning electron microscopy, and capillary gas chromatography. Alternaria alternata, Cladosporium herbarum, Epicoccum purpurascens, and Fusarium pallidoroseum were isolated from cotton leaf dust.
View Article and Find Full Text PDFSpecialized analytical methods are required for identification of components of agricultural dusts such as those generated in harvesting, transportation, storage, and processing of cotton, corn, and soybeans. The larger particles and trash components of the dusts can often be identified visually or with the aid of an optical microscope (OM). The respirable portion of the dust, that which causes lung dysfunction, retains few structural features for identification.
View Article and Find Full Text PDFThe feasibility of identifying, by microscopial and X-ray techniques, the biological source of cotton plant dusts produced from individual plant parts was determined. Major elements observed were magnesiu, aluminum, silicon, sulfur, chlorine, potassiu, and calcium. Some plant parts were distinguished by variations in elemental content.
View Article and Find Full Text PDF