Physical neuromorphic computing, exploiting the complex dynamics of physical systems, has seen rapid advancements in sophistication and performance. Physical reservoir computing, a subset of neuromorphic computing, faces limitations due to its reliance on single systems. This constrains output dimensionality and dynamic range, limiting performance to a narrow range of tasks.
View Article and Find Full Text PDFStrongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities.
View Article and Find Full Text PDFReservoir computing is a neuromorphic architecture that may offer viable solutions to the growing energy costs of machine learning. In software-based machine learning, computing performance can be readily reconfigured to suit different computational tasks by tuning hyperparameters. This critical functionality is missing in 'physical' reservoir computing schemes that exploit nonlinear and history-dependent responses of physical systems for data processing.
View Article and Find Full Text PDFStrongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin-vortex bistability and demonstrated a four-state metamaterial spin system, the 'artificial spin-vortex ice' (ASVI).
View Article and Find Full Text PDFArtificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic, and magnonics. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising results. As the field progresses, direct in-depth comparisons of distinct artificial spin systems are crucial to advancing the field.
View Article and Find Full Text PDF