Silicon-based quantum emitters are candidates for large-scale qubit integration due to their single-photon emission properties and potential for spin-photon interfaces with long spin coherence times. Here, we demonstrate local writing and erasing of selected light-emitting defects using femtosecond laser pulses in combination with hydrogen-based defect activation and passivation at a single center level. By choosing forming gas (N/H) during thermal annealing of carbon-implanted silicon, we can select the formation of a series of hydrogen and carbon-related quantum emitters, including T and C centers while passivating the more common G-centers.
View Article and Find Full Text PDFSilicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity.
View Article and Find Full Text PDFQuantum light sources play a fundamental role in quantum technologies ranging from quantum networking to quantum sensing and computation. The development of these technologies requires scalable platforms, and the recent discovery of quantum light sources in silicon represents an exciting and promising prospect for scalability. The usual process for creating color centers in silicon involves carbon implantation into silicon, followed by rapid thermal annealing.
View Article and Find Full Text PDFSingle-aperture cavities are a key component of lasers that are instrumental for the amplification and emission of a single light mode. However, the appearance of high-order transverse modes as the size of the cavities increases has frustrated efforts to scale-up cavities while preserving single-mode operation since the invention of the laser six decades ago. A suitable physical mechanism that allows single-mode lasing irrespective of the cavity size-a 'scale invariant' cavity or laser-has not been identified yet.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
In this study, optical multispectral sensors based on perovskite semiconductors have been proposed, simulated, and characterized. The perovskite material system combined with the 3D vertical integration of the sensor channels allow for realizing sensors with high sensitivities and a high spectral resolution. The sensors can be applied in several emerging areas, including biomedical imaging, surveillance, complex motion planning of autonomous robots or vehicles, artificial intelligence, and agricultural applications.
View Article and Find Full Text PDF