Plant glutamate decarboxylase (GAD) is a Ca-calmodulin (CaM) activated enzyme that produces γ-aminobutyrate (GABA) as the first committed step of the GABA shunt. Our prior research established that in vivo phosphorylation of AtGAD1 (AT5G17330) occurs at multiple N-terminal serine residues following Pi resupply to Pi-starved cell cultures of the model plant Arabidopsis thaliana. The aim of the current investigation was to purify recombinant AtGAD1 (rAtGAD1) following its expression in Escherichia coli to facilitate studies of the impact of phosphorylation on its kinetic properties.
View Article and Find Full Text PDFFructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11).
View Article and Find Full Text PDFGlucose-6-phosphate dehydrogenase (G6PD) catalyzes the first committed step of the oxidative pentose phosphate pathway (OPPP). Our recent phosphoproteomics study revealed that the cytosolic G6PD6 isozyme became hyperphosphorylated at Ser12, Thr13 and Ser18, 48 h following phosphate (Pi) resupply to Pi-starved (-Pi) cell cultures. The aim of the present study was to assess whether G6PD6 phosphorylation also occurs in shoots or roots following Pi resupply to -Pi seedlings, and to investigate its relationship with G6PD activity.
View Article and Find Full Text PDFEukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied.
View Article and Find Full Text PDFCalmodulin (CaM)-like proteins (CMLs) are the largest family of calcium-binding proteins in plants, yet the functions of most CMLs are unknown. Arabidopsis CML13 and CML14 are closely related paralogs that interact with the isoleucine-glutamine (IQ) domains of myosins, IQ-domain proteins and CaM-binding transcription activators (CAMTAs). Here, we explored the physiological roles of CML13 and CML14 during development by using dexamethasone (Dex)-inducible RNA silencing to suppress either CML13 or CML14 transcript levels.
View Article and Find Full Text PDF