J Gravit Physiol
December 2001
In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues.
View Article and Find Full Text PDFThe effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls.
View Article and Find Full Text PDFAs part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented.
View Article and Find Full Text PDFPlants are an important component of the controlled ecological life-support system (CELSS) for future long-term spaceflight and the International Space Station. Therefore, it is critical to understand the susceptibility of plants to pathogen infection in microgravity. An increase in both hyphal growth and sporangia formation in Phycomyces blakes in microgravity has been described.
View Article and Find Full Text PDFMicrogravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.
View Article and Find Full Text PDF