Publications by authors named "W Phares"

The cellular peptidyl-prolyl isomerase cyclophilin A is incorporated into human immunodeficiency virus type 1 virions via contacts with the proline-rich domain of the Gag polyprotein. Cyclosporine A and nonimmunosuppressive analogs bind with high affinity to cyclophilin A, compete with Gag for binding to cyclophilin A, and prevent incorporation of cyclophilin A into virions; in parallel with the disruption of cyclophilin A incorporation into virions, there is a linear reduction in the initiation of reverse transcription after infection of a T cell. Passage of human immunodeficiency virus type 1 in the presence of the drug selects one of two mutations, either of which alters the proline-rich domain of Gag and is sufficient to confer drug resistance on the cloned wild-type provirus.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 mutants that are resistant to inhibition by cyclosporins arise spontaneously in vitro during propagation in a HeLa-CD4+ cell line in the presence of a nonimmunosuppressive analog of cyclosporin A. Interestingly, the phenotype of all of the mutants examined is drug resistant and drug dependent, with both cyclosporin A and its analog. Four independently isolated mutants have been analyzed genetically by construction of recombinant proviruses in the NL4-3 parental strain background and subsequent testing of the chimeric viruses in HeLa cells.

View Article and Find Full Text PDF

The kappa B transcriptional enhancer motif, present in many viruses, is broadly active in many cell types. It is recognized by c-Rel/HIVEN86A in DNA affinity precipitation (DNAP) assays and by the Rel-related p50 and p65 subunits of the nuclear factor NF-kappa B in electrophoretic mobility shift assays (EMSA). We have analyzed activities that bind the human immunodeficiency virus type 1 and simian virus 40 kappa B motifs in two human leukemia cell lines, Jurkat and H9.

View Article and Find Full Text PDF