Publications by authors named "W Petrich"

Background And Aims: Randomised controlled trials comparing transcatheter aortic valve replacement (TAVR) and surgical aortic valve replacement (SAVR) were performed in highly selected populations and data regarding long-term secondary complications beyond mortality are scarce. This study used data from Ontario, Canada to compare mid-term and long-term clinical outcomes in a representative real-world cohort of patients who underwent TAVR and SAVR from 2007 to 2016.

Methods: A novel overlap weighting propensity score method was used to match patients undergoing TAVR or SAVR.

View Article and Find Full Text PDF

Diagnostic procedures, therapeutic recommendations, and medical risk stratifications are based on dedicated, strictly controlled clinical trials. However, a plethora of real-world medical data exists, whereupon the increase in data volume comes at the expense of completeness, uniformity, and control. Here, a case-by-case comparison shows that the predictive power of our real world data-based model for diabetes-related chronic kidney disease outperforms published algorithms, which were derived from clinical study data.

View Article and Find Full Text PDF

Mid-infrared spectroscopy has been applied to research in biology and medicine for more than 20 years and conceivable applications have been identified. More recently, these applications have been shown to benefit from the use of quantum cascade lasers due to their specific properties, namely high spectral power density, small beam parameter product, narrow emission spectrum and, if needed, tuning capabilities. This review provides an overview of the achievements and illustrates some applications which benefit from the key characteristics of quantum cascade laser-based mid-infrared spectroscopy using examples such as breath analysis, the investigation of serum, non-invasive glucose monitoring in bulk tissue and the combination of spectroscopy and microscopy of tissue thin sections for rapid histopathology.

View Article and Find Full Text PDF

Continuous glucose monitoring enables an improved disease management for people with diabetes. However, state-of-the-art, enzyme-based, minimally invasive sensors lose their sensitivity over time and have to be replaced periodically. Here, we present the in vitro investigation of a quantum cascade laser-based measurement scheme that conceptually should be applicable over elongated periods of time due to its reagent-free nature and may therefore be considered as an approach towards long-term implantation.

View Article and Find Full Text PDF

A laser's high degree of coherence leads to interferences, which-in the absence of precautions-can cause severe image distortions such as fringes and speckles and which thereby strongly hamper a meaningful interpretation of hyperspectral images in laser-based widefield microspectroscopy. While images and spectra of homogenous samples may already suffer from interferences, any structured object such as a tissue thin section will add to these distortions due to wavelength- and, in particular, sample-dependent phase shifts (structure sizes, absorption coefficients, refractive indices). This effect is devastating for the universal applicability of laser-based microspectroscopy especially in the mid-infrared (MIR), where cell sizes are of the same dimension as the wavelength of the illumination source.

View Article and Find Full Text PDF