Publications by authors named "W Paul Duprex"

The emergence of highly pathogenic H5N1 avian influenza in dairy cattle herds across the United States has caused multiple mild human infections. There is an urgent need to understand the risk of spillover into humans. Here, we show that pre-existing immunity from the 2009 H1N1 pandemic influenza virus provided protection from mortality and severe clinical disease to ferrets intranasally infected with bovine H5N1.

View Article and Find Full Text PDF

Oropouche fever is a re-emerging global viral threat caused by infection with Oropouche orthobunyavirus (OROV). While disease is generally self-limiting, historical and recent reports of neurologic involvement highlight the importance of understanding the neuropathogenesis of OROV. In this study, we characterize viral replication kinetics in neurons and microglia derived from immortalized, primary, and induced pluripotent stem cell-derived cells, which are all permissive to infection.

View Article and Find Full Text PDF

Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays.

View Article and Find Full Text PDF

Examining the persistence of highly pathogenic avian influenza A(H5N1) from cattle and human influenza A(H1N1)pdm09 pandemic viruses in unpasteurized milk revealed that both remain infectious on milking equipment materials for several hours. Those findings highlight the risk for H5N1 virus transmission to humans from contaminated surfaces during the milking process.

View Article and Find Full Text PDF

Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. An initial concern was the potential for vaccine- or antibody-dependent enhancement (ADE) of disease as had been reported with other coronaviruses. To evaluate this, we first developed a ferret model by exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral/ocular) or inhalation using a small particle aerosol.

View Article and Find Full Text PDF