Publications by authors named "W P Verdegaal"

The escalating atmospheric CO concentration is one of the most urgent environmental concerns of our age. To effectively capture CO , various materials have been studied. Among them, alkylamine-modified metal-organic frameworks (MOFs) are considered to be promising candidates.

View Article and Find Full Text PDF

This manuscript presents experimental data for 20 adsorption materials (metal-organic frameworks, porous polymer networks, and Zeolite-5A), including CO2 and N2 isotherms and heat capacities. With input from only experimental data, working capacities per energy for each material were calculated. Furthermore, by running seven different carbon-capture scenarios in which the initial flue-gas composition and process temperature was systematically changed, we present a range of performances for each material and quantify how sensitive each is to these varying parameters.

View Article and Find Full Text PDF

Different alkylamine molecules were post-synthetically tethered to the unsaturated Cr(III) centers in the metal-organic framework MIL-101. The resultant metal-organic frameworks show almost no N2 adsorption with significantly enhanced CO2 capture under ambient conditions as a result of the interaction between amine groups and CO2 molecules. Given the extraordinary stability, high CO2 uptake, ultrahigh CO2 /N2 selectivity, and mild regeneration energy, MIL-101-diethylenetriamine holds exceptional promise for post-combustion CO2 capture and CO2 /N2 separation.

View Article and Find Full Text PDF

The activation and CO2 capture properties of a microporous metal-organic framework with elastic single-molecule traps were systematically investigated. This material shows a unique low-energy gas-purge activation capability, high CO2 adsorption selectivities over various gases and optimized working capacities per energy of 2.9 mmol kJ(-1) at 128 °C.

View Article and Find Full Text PDF

In order for any material to be considered in a post-combustion carbon capture technology, it must have high working capacities of CO₂ from flue gas and be regenerable using as little energy as possible. Shown here is an easy to use method to calculate both working capacities and regeneration energies and thereby predict optimal desorption conditions for any material.

View Article and Find Full Text PDF