The slab structure and high elevation of the Himalaya-Tibet region and their underlying mechanisms have been widely discussed. Many studies interpret a flat slab segment of Indian continental lithosphere located below the overriding plate, but interpretations of the northward extent of the flat slab differ substantially, with minimum estimates placing the boundary at the northern margin of the Himalaya (Indus-Yarlung Tsangpo suture), and maximum estimates placing it at the northern boundary of Tibet. In this study, we investigate for the first time if a flat slab segment of subducted buoyant Indian continental lithosphere below the Himalaya-Tibet region is geodynamically feasible and we quantify its northward extent, as well as its contribution to the high topography of the region.
View Article and Find Full Text PDFThe India-Asia collision has formed the highest mountains on Earth and is thought to account for extensive intraplate deformation in Asia. The prevailing explanation considers the role of the Pacific and Sunda subduction zones as passive during deformation. Here we test the hypothesis that subduction played an active role and present geodynamic experiments of continental deformation that model Indian indentation and active subduction rollback.
View Article and Find Full Text PDFThe origin of Samoan volcanism in the southwest Pacific remains enigmatic. Whether mantle melting is solely caused by a mantle plume is questionable because some volcanism, here referred to as non-hotspot volcanism, defies the plume model and its linear age-progression trend. Indeed, non-hotspot volcanism occurred as far as 740 km west of the predicted Samoan hotspot after 5 Ma.
View Article and Find Full Text PDFSubduction along the western margin of South America has been active since the Jurassic, but Andean orogeny started in the middle Cretaceous and was preceded by backarc extension in the Jurassic-Early Cretaceous. The timing and sequence of these events has remained unexplained. Here I present a four-dimensional buoyancy-driven whole-mantle subduction model implying that the ~200 Myr geological evolution can be attributed to sinking of a wide slab into a layered mantle, where upper-mantle wide-slab subduction causes backarc extension, while whole-mantle (upper+lower) wide-slab subduction drives Andean orogeny.
View Article and Find Full Text PDFSubduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W.
View Article and Find Full Text PDF