A highly productive ablation process of 100 nm thick platinum films with a processed area rate of up to 378 cm/min is presented using radially and azimuthally polarized laser beams. This was achieved by developing a laser amplifier generating 757 fs long laser pulses at a maximum average power of 390 W and a repetition rate of 10.6 MHz with adjustable polarization states, i.
View Article and Find Full Text PDFA two-stage master-oscillator power-amplifier (MOPA) system based on Yb:YAG single-crystal-fiber (SCF) technology and designed for high peak power is studied to significantly increase the pulse energy of a low-power picosecond laser. The first SCF amplifier has been designed for high gain. Using a gain medium optimized in terms of doping concentration and length, an optical gain of 32 dB has been demonstrated.
View Article and Find Full Text PDFWe demonstrate a compact and simple two-stage Yb:YAG single crystal fiber amplifier which delivers 160 W average power, 800 fs pulses without chirped pulse amplification. This is the highest average power of femtosecond laser based on SCF. Additionally, we demonstrate the highest small signal gain of 32.
View Article and Find Full Text PDFWe demonstrate a three-stage diode-pumped Yb:YAG single-crystal-fiber amplifier to generate femtosecond pulses at high average powers with linear or cylindrical (i.e., radial or azimuthal) polarization.
View Article and Find Full Text PDFUltrafast VECSELs are compact pulsed laser sources with more flexibility in the emission wavelength compared to diode-pumped solid-state lasers. Typically, the reduction of the pulse repetition rate is a straightforward method to increase both pulse energy and peak power. However, the relatively short carrier lifetime of semiconductor gain materials of a few nanoseconds sets a lower limit to the repetition rate of passively modelocked VECSELs.
View Article and Find Full Text PDF