Publications by authors named "W P Melega"

We previously showed that, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), vaccination with bacillus Calmette-Guerin (BCG) prior to MPTP exposure limited the loss of striatal dopamine (DA) and dopamine transporter (DAT) and prevented the activation of nigral microglia. Here, we conducted BCG dose studies and investigated the mechanisms underlying BCG vaccination's neuroprotective effects in this model. We found that a dose of 1 × 10(6) cfu BCG led to higher levels of striatal DA and DAT ligand binding (28% and 42%, respectively) in BCG-vaccinated vs.

View Article and Find Full Text PDF

The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.

View Article and Find Full Text PDF

A prototype Low Intensity Focused Ultrasound (LIFU) stimulator system was developed to evaluate non-invasive neuromodulation in a large animal model. We conducted a feasibility study on a Göttingen minipig, demonstrating reversible, targeted transcranial neuromodulation. The hypothalamus of the minipig was repeatedly stimulated with LIFU which evoked temporally correlated increases in both heart rate and blood pressure.

View Article and Find Full Text PDF

Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS.

View Article and Find Full Text PDF

With the recent approval by the Food and Drug Administration (FDA) of Deep Brain Stimulation (DBS) for Parkinson's Disease, dystonia and obsessive compulsive disorder (OCD), vagus nerve stimulation (VNS) for epilepsy and depression, and repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression, neuromodulation has become increasingly relevant to clinical research. However, these techniques have significant drawbacks (eg, lack of special specificity and depth for the rTMS, and invasiveness and cumbersome maintenance for DBS). This article reviews the background, rationale, and pilot studies to date, using a new brain stimulation method-low-intensity focused ultrasound pulsation (LIFUP).

View Article and Find Full Text PDF