Publications by authors named "W P Landis"

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for treatment of secondary neurological injury.

View Article and Find Full Text PDF
Article Synopsis
  • Three-dimensional correlative multimodal and multiscale imaging is a new technique designed to study complex biological materials like bone by combining different images across various scales for a fuller understanding of their structure.
  • Researchers created a specific workflow for analyzing human trabecular bone, using a femtosecond laser to create precise reference grids that help correlate images and identify features like bone cells in high detail.
  • This advanced imaging method offers the potential for detailed structural analysis not only of bone but also of other biological materials and engineered substances, providing valuable insights into their architecture from large to tiny scales.
View Article and Find Full Text PDF

The process of mineralization fundamentally alters collagenous tissue biomechanics. While the structure and organization of mineral particles have been widely studied, the impact of mineralization on collagen matrix structure, particularly at the molecular scale, requires further investigation. In this study, synchrotron X-ray scattering (XRD) and polarization-resolved second harmonic generation microscopy (pSHG) were used to study normally mineralizing turkey leg tendon in tissue zones representing different stages of mineralization.

View Article and Find Full Text PDF

This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death.

View Article and Find Full Text PDF