Publications by authors named "W P Flatt"

Chronically decerebrate (CD) rats, in which the forebrain and its descending projections are completely neurally isolated from hindbrain and rostral projections, gain substantial amounts of body fat, lose lean tissue, and have low circulating testosterone concentrations. We tested whether testosterone replacement would normalize body composition of male CD rats. Five groups of rats were used: CD placebo, CD testosterone, control placebo, castrate placebo, and castrate testosterone.

View Article and Find Full Text PDF

Previous studies of hepatic insulin gene therapy (HIGT) focused on glycemic effects of insulin produced from hepatocytes. In this study, we extend the observations of glycemic control with metabolically regulated HIGT to include systemic responses and whole-body metabolism. An insulin transgene was administered with an adenoviral vector [Ad/(GlRE)(3)BP1-2xfur] to livers of BB/Wor rats made diabetic with polyinosinic polycytidilic acid (poly-I:C) (HIGT group), and results compared with nondiabetic controls (non-DM), and diabetic rats receiving different doses of continuous-release insulin implants (DM-low BG and DM-high BG).

View Article and Find Full Text PDF

Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation.

View Article and Find Full Text PDF

Rats exposed to restraint stress for 3 h on each of 3 days lose weight and do not return to the weight of their non-stressed controls for extended periods of time. Studies described here demonstrate that the initial weight loss is associated with increased energy expenditure and reduced food intake on the days of restraint but that there is no difference between stressed and control rats once stress ends. The failure to compensate for this energy deficit accounts for the sustained reduction in weight which lasts for up to 80 days after the end of restraint.

View Article and Find Full Text PDF

The contribution of the caudal brainstem to adaptation to starvation was tested using chronically maintained decerebrate (CD) and neurologically intact controls. All rats were gavage fed an amount of diet that maintained weight gain in controls. CD rats were subjected to a two-stage surgery to produce a complete transection of the neuroaxis at the mesodiencephalic juncture.

View Article and Find Full Text PDF