Publications by authors named "W P Cleveland"

During cardiopulmonary resuscitation, pulmonary vasoconstriction due to hypoxia and hypercarbia restricts blood flow from the right to the left heart, resulting in reduced cardiac output that further inhibits adequate oxygenation and the ability to distribute oxygenated blood and medications. An inhaled pulmonary vasodilator could attenuate vasoconstriction and, therefore, increase cardiac output. We used rat isolated lungs to test if inhaled Argon leads to pulmonary vasodilation in phenylephrine-treated lungs.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production.

View Article and Find Full Text PDF

Ex vivo lung preparations are a useful model that can be translated to many different fields of research, complementing corresponding in vivo and in vitro models. Laboratories wishing to use isolated lungs need to be aware of important steps and inherent challenges to establish a setup that is affordable, reliable, and that can be easily adapted to fit the topic of interest. This paper describes a DIY (do it yourself) model for ex vivo rat lung ventilation and perfusion to study drug and gas effects on pulmonary vascular tone, independent of changes in cardiac output.

View Article and Find Full Text PDF

Due to its comorbidities type 2 diabetes mellitus (T2DM) and hypertension, the Zucker Spontaneous Hypertensive Fatty (ZSF1) rat is a clinically relevant animal model when assessing ischemia-reperfusion (IR) injury. Most IR studies in hearts isolated from diabetic animals have been conducted at normal glucose concentrations, providing a different environment compared to in-vivo. We hypothesized IR injury to be attenuated in isolated hearts of diabetic ZSF1 rats when adjusting the Krebs-buffer (KB) to their in-vivo, i.

View Article and Find Full Text PDF

Myocardial infarction is a leading cause for morbidity and mortality worldwide. The only viable treatment for the ischemic insult is timely reperfusion, which further exacerbates myocardial injury. Maintaining mitochondrial function is crucial in preserving cardiomyocyte function in ischemia reperfusion (IR) injury.

View Article and Find Full Text PDF