Guanylate-binding proteins (GBPs) are essential interferon-γ-activated large GTPases that play a crucial role in host defense against intracellular bacteria and parasites. While their protective functions rely on protein polymerization, our understanding of the structural intricacies of these multimerized states remains limited. To bridge this knowledge gap, we present dimer models for human GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) using an integrative approach, incorporating the crystal structure of hGBP1's GTPase domain dimer, crosslinking mass spectrometry, small-angle X-ray scattering, protein-protein docking, and molecular dynamics simulations.
View Article and Find Full Text PDFChoosing fusion tags to enhance the recombinant protein levels in the cytoplasm of Bacillus subtilis has been limited. Our previous study demonstrated that His-tag at the N-terminus could increase the expression levels of the low-expression gene egfp, while significantly reducing the high-expression genes gfp+ and bgaB in the cytoplasm of B. subtilis.
View Article and Find Full Text PDFThe IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG.
View Article and Find Full Text PDFThe influence of fusion tags to produce recombinant proteins in the cytoplasm of is not well-studied as in . This study aimed to investigate the influence of His-tags with different codons on the protein production levels of the high expression gene () and low expression gene () in the cytoplasm of cells. We used three different N-terminal His-tags, M-6xHis, MRGS-8xHis and MEA-8xHis, to investigate their effects on the production levels of GFP variants under the control of the P212 in .
View Article and Find Full Text PDFProtein disorder and aggregation play significant roles in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The end products of the aggregation process in these diseases are highly structured amyloid fibrils. Though in most cases, small, soluble oligomers formed during amyloid aggregation are the toxic species.
View Article and Find Full Text PDF