Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation.
View Article and Find Full Text PDFThere is growing concern that some managed and wild insect pollinator populations are in decline, potentially threatening biodiversity and sustainable food production on a global scale. In recent years, there has been increasing evidence that sub-lethal exposure to neurotoxic, neonicotinoid pesticides can negatively affect pollinator immunocompetence and could amplify the effects of diseases, likely contributing to pollinator declines. However, a direct pathway connecting neonicotinoids and immune functions remains elusive.
View Article and Find Full Text PDFDNA-based Points Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) is an effective super resolution microscopy technique, and its optimization is key to improve nanoscale detection. The state-of-the-art improvements that are at the base of this optimization have been first routinely validated on DNA nanostructure devices before being tested on biological samples. This allows researchers to finely tune DNA-PAINT imaging features in a more controllable environment.
View Article and Find Full Text PDFThe fitness effects of overt parasites, and host resistance to them, are well documented. Most symbionts, however, are more covert and their interactions with their hosts are less well understood. , an intracellular symbiont of insects, is particularly interesting because it is thought to be unaffected by the host immune response and to have fitness effects mostly focussed on sex ratio manipulation.
View Article and Find Full Text PDFAmines are centrally important motifs in medicinal chemistry and biochemistry, and indispensable intermediates and linchpins in organic synthesis. Despite their cross-disciplinary prominence, synthetic access to amine continues to rely on two-electron approaches based on reductions and additions of organometallic reagents, limiting their accessible chemical space and necessitating stepwise preassembly of synthetic precursors. We report herein a homogeneous photocatalytic tricomponent decarboxylative radical-mediated amine construction that enables modular access to α-branched secondary amines directly from the broad and structurally diverse chemical space of carboxylic acids in a tricomponent reaction with aldehydes and aromatic amines.
View Article and Find Full Text PDF