Publications by authors named "W O Dutra"

Background/objectives: Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen.

View Article and Find Full Text PDF

The iterative bleaching extends multiplexity (IBEX) Knowledge-Base is a central portal for researchers adopting IBEX and related 2D and 3D immunofluorescence imaging methods. The design of the Knowledge-Base is modeled after efforts in the open-source software community and includes three facets: a development platform (GitHub), static website, and service for data archiving. The Knowledge-Base facilitates the practice of open science throughout the research life cycle by providing validation data for recommended and non-recommended reagents, e.

View Article and Find Full Text PDF

Background: Chagas disease cardiomyopathy is characterized by intense immune activation, with double-negative (DN) T cells as key producers of inflammatory cytokines. CD1d is an antigen-presenting molecule involved in the activation of DN T cells.

Methods: We characterized CD1d+ monocytes from patients with cardiac (CARD) and indeterminate (IND) disease using flow cytometry.

View Article and Find Full Text PDF

Iterative Bleaching Extends multipleXity (IBEX) is a versatile method for highly multiplexed imaging of diverse tissues. Based on open science principles, we created the IBEX Knowledge-Base, a resource for reagents, protocols and more, to empower innovation.

View Article and Find Full Text PDF

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a substantial global health burden, affecting millions of individuals worldwide and posing a continual risk of infection. Despite the high mortality and morbidity rates, effective vaccines to prevent infection by the parasite remain elusive, and the drugs currently available are suboptimal. Understanding the intricate dynamics of parasite-host interactions and the resulting immune responses, which contribute to both protection and pathology, is crucial for the development of effective vaccines and therapies against Chagas disease.

View Article and Find Full Text PDF