Publications by authors named "W Newman"

Objective: Lower extremity arterial disease (LEAD) is a prevalent condition that produces a significant burden on health care systems. Patients with LEAD have an increased risk of major adverse cardiovascular events as well as major adverse limb events. Despite significant variation in guidance on antiplatelet therapy for LEAD worldwide, many governing bodies recommend clopidogrel as the preferred single anti-platelet agent.

View Article and Find Full Text PDF

Pharmacogenetic-guided prescribing can lead to more accurate medicine selection and dosing, improving patient outcomes and leading to better use of health care budgets. Loss-of-function variants in CYP2C19 influence an individual's ability to metabolize clopidogrel, increasing the risk of secondary vascular events following ischemic stroke and percutaneous coronary intervention. In acute clinical contexts, centralized laboratory-based testing is too slow to inform timely clinical decision-making.

View Article and Find Full Text PDF

In 2020, the introduction of pre-emptive DPYD genotyping prior to the administration of systemic fluoropyrimidine-based chemotherapy represented one of the first widespread pharmacogenetic testing programmes to be applied nationally in the United Kingdom. Pharmacogenetic variants in the DPYD gene found in between 3 and 6% of the population are a recognised cause of primary DPD enzyme deficiency and associated increased risk of severe fluoropyrimidine toxicity [1]. Yet, the availability of testing globally is heterogeneous.

View Article and Find Full Text PDF

The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency.

View Article and Find Full Text PDF

Importance: Stereotactic body radiation therapy (SBRT) for spinal metastases improves symptomatic outcomes and local control compared to conventional radiotherapy. Treatment failure most often occurs within the epidural space, where dose is constrained by the risk of radiation myelitis (RM). Current constraints designed to prevent RM after spine SBRT are derived from limited data.

View Article and Find Full Text PDF