Publications by authors named "W Naimark"

Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants.

View Article and Find Full Text PDF

Polymeric drug carriers are widely used for providing temporal and/or spatial control of drug delivery, with corticosteroids being one class of drugs that have benefitted from their use for the treatment of inflammatory-mediated conditions. However, these polymer-based systems often have limited drug-loading capacity, suboptimal release kinetics, and/or promote adverse inflammatory responses. This manuscript investigates and describes a strategy for achieving controlled delivery of corticosteroids, based on a discovery that low molecular weight corticosteroid dimers can be processed into drug delivery implant materials using a broad range of established fabrication methods, without the use of polymers or excipients.

View Article and Find Full Text PDF

Endomyocardial injection of adenoviral gene vectors enables localized delivery to comprised myocardial tissue. However, many materials used in endomyocardial delivery catheters may not be compatible with adenoviral gene vectors. In this study, a series of catheter-based endocardial and epicardial (direct visualization) procedures were performed to assess catheter-adenovirus compatibility in an in vivo model.

View Article and Find Full Text PDF

Therapeutic angiogenesis and percutaneous transmyocardial revascularization (PMR) are potentially synergistic modalities to improve myocardial perfusion. To evaluate the efficiency of FGF2 delivery into an area that has been radio frequency (RF) ablated, we studied two catheter-based delivery methods, a direct injection system (Stiletto) and a combined RF ablation-delivery system (RF-PMR). Four groups (n = 3/group) of pigs received six transendocardial injections of (125)I-FGF2/fluorescent microspheres with either the Stiletto or the RF-PMR catheter.

View Article and Find Full Text PDF

During pericardial development or disease, changes in diastolic filling pressure and chamber volumes lead to changes in pericardial stress/strain state. These changes may be transduced into altered cellular synthesis of connective tissue proteins. To study the underlying mechanisms, we have constructed a system in which tissue strips may be subjected to a range of physiologically relevant load-elongation waveforms while being maintained under optimal tissue culture conditions.

View Article and Find Full Text PDF