Publications by authors named "W N Reijnders"

ATP generation by both glycolysis and glycerol catabolism is autocatalytic, because the first kinases of these pathways are fuelled by ATP produced downstream. Previous modeling studies predicted that either feedback inhibition or compartmentation of glycolysis can protect cells from accumulation of intermediates. The deadly parasite Trypanosoma brucei lacks feedback regulation of early steps in glycolysis yet sequesters the relevant enzymes within organelles called glycosomes, leading to the proposal that compartmentation prevents toxic accumulation of intermediates.

View Article and Find Full Text PDF

The three FNR (fumarate and nitrate reductase regulatory protein)-type transcription activators of Paracoccus denitrificans, NarR, NnrR and FnrP, appear to have specific tasks in gene regulation during the switch from aerobic growth to denitrification. We here set out a series of experiments to get a fundamental understanding of the mechanism underlying this specificity. In one of these, we changed the nucleotide sequence of an NnrR box, the binding site for NnrR, into one found in FnrP-regulated promoters.

View Article and Find Full Text PDF

Production of nitric oxide (NO) and nitrous oxide (N(2)O) by ammonia (NH(3))-oxidizing bacteria in natural and man-made habitats is thought to contribute to the undesirable emission of NO and N(2)O into the earth's atmosphere. The NH(3)-oxidizing bacterium Nitrosomonas europaea expresses nitrite reductase (NirK), an enzyme that has so far been studied predominantly in heterotrophic denitrifying bacteria where it is involved in the production of these nitrogenous gases. The finding of nirK homologues in other NH(3)-oxidizing bacteria suggests that NirK is widespread among this group; however, its role in these nitrifying bacteria remains unresolved.

View Article and Find Full Text PDF

Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate.

View Article and Find Full Text PDF

In order to study the induction of terminal oxidases in Paracoccus denitrificans, their promoters were fused to the lacZ reporter gene and analysed in the wild-type strain, in an FnrP-negative mutant, in a cytochrome bc1-negative mutant, and in six single or double oxidase-negative mutant strains. The strains were grown under aerobic, semi-aerobic, and denitrifying conditions. The oxygen-sensing transcriptional-regulatory protein FnrP negatively regulated the activity of the qox promoter, which controls expression of the ba3-type quinol oxidase, while it positively regulated the activity of the cco promoter, which controls expression of the cbb3-type cytochrome c oxidase.

View Article and Find Full Text PDF