Publications by authors named "W N Edeling"

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties.

View Article and Find Full Text PDF

Classical molecular dynamics is a computer simulation technique that is in widespread use across many areas of science, from physics and chemistry to materials, biology, and medicine. The method continues to attract criticism due its oft-reported lack of reproducibility which is in part due to a failure to submit it to reliable uncertainty quantification (UQ). Here we show that the uncertainty arises from a combination of (i) the input parameters and (ii) the intrinsic stochasticity of the method controlled by the random seeds.

View Article and Find Full Text PDF

This paper presents an approach named sensitivity-driven simulation development (SDSD), where the use of sensitivity analysis (SA) guides the focus of further simulation development and refinement efforts, avoiding direct calibration to validation data. SA identifies assumptions that are particularly pivotal to the validation result, and in response model ruleset refinement resolves those assumptions in greater detail, balancing the sensitivity more evenly across the different assumptions and parameters. We implement and demonstrate our approach to refine agent-based models of forcibly displaced people in neighbouring countries.

View Article and Find Full Text PDF

We present the VECMA toolkit (VECMAtk), a flexible software environment for single and multiscale simulations that introduces directly applicable and reusable procedures for verification, validation (V&V), sensitivity analysis (SA) and uncertainty quantication (UQ). It enables users to verify key aspects of their applications, systematically compare and validate the simulation outputs against observational or benchmark data, and run simulations conveniently on any platform from the desktop to current multi-petascale computers. In this sequel to our paper on VECMAtk which we presented last year [1] we focus on a range of functional and performance improvements that we have introduced, cover newly introduced components, and applications examples from seven different domains such as conflict modelling and environmental sciences.

View Article and Find Full Text PDF

In this study, we investigate uncertainties in a large eddy simulation of the atmosphere, employing modern uncertainty quantification methods that have hardly been used yet in this context. When analysing the uncertainty of model results, one can distinguish between uncertainty related to physical parameters whose values are not exactly known, and uncertainty related to modelling choices such as the selection of numerical discretization methods, of the spatial domain size and resolution, and the use of different model formulations. While the former kind is commonly studied e.

View Article and Find Full Text PDF