Publications by authors named "W Marslen-Wilson"

Article Synopsis
  • * Researchers measured brain activity (using electro- and magnetoencephalography) while participants watched moving dots to test Heeger's model's accuracy by looking for cortical entrainment to its components.
  • * The findings indicate that brain responses corresponded to various aspects of motion, supporting Heeger's model over alternatives, and providing insights into how we perceive motion in our visual field.
View Article and Find Full Text PDF

Speech comprehension is remarkable for the immediacy with which the listener hears what is being said. Here, we focus on the neural underpinnings of this process in isolated spoken words. We analysed source-localised MEG data for nouns using Representational Similarity Analysis to probe the spatiotemporal coordinates of phonology, lexical form, and the semantics of emerging word candidates.

View Article and Find Full Text PDF

A core aspect of human speech comprehension is the ability to incrementally integrate consecutive words into a structured and coherent interpretation, aligning with the speaker's intended meaning. This rapid process is subject to multidimensional probabilistic constraints, including both linguistic knowledge and non-linguistic information within specific contexts, and it is their interpretative coherence that drives successful comprehension. To study the neural substrates of this process, we extract word-by-word measures of sentential structure from BERT, a deep language model, which effectively approximates the coherent outcomes of the dynamic interplay among various types of constraints.

View Article and Find Full Text PDF

Introduction: In recent years, machines powered by deep learning have achieved near-human levels of performance in speech recognition. The fields of artificial intelligence and cognitive neuroscience have finally reached a similar level of performance, despite their huge differences in implementation, and so deep learning models can-in principle-serve as candidates for mechanistic models of the human auditory system.

Methods: Utilizing high-performance automatic speech recognition systems, and advanced non-invasive human neuroimaging technology such as magnetoencephalography and multivariate pattern-information analysis, the current study aimed to relate machine-learned representations of speech to recorded human brain representations of the same speech.

View Article and Find Full Text PDF

Communication through spoken language is a central human capacity, involving a wide range of complex computations that incrementally interpret each word into meaningful sentences. However, surprisingly little is known about the spatiotemporal properties of the complex neurobiological systems that support these dynamic predictive and integrative computations. Here, we focus on prediction, a core incremental processing operation guiding the interpretation of each upcoming word with respect to its preceding context.

View Article and Find Full Text PDF