Publications by authors named "W M Weidemann"

Glycosylation is the most frequent and important post-translational modification of proteins. It occurs on specific consensus sequences but the final structure of a particular glycan is not coded on the DNA, rather it depends on the expression of the required enzymes and the availability of substrates (activated monosaccharides). Sialic acid (Sia) is the terminal monosaccharide of most glycoproteins or glycolipids (= glycoconjugates) and involved in a variety of function on molecular (e.

View Article and Find Full Text PDF

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme for the biosynthesis of sialic acids. Sialic acids are terminal monosaccharides of glycoconjugates and gangliosides, which have an essential influence on various cell interactions. The sialylation of proteins varies during development, aging, and pathogenesis of degenerative diseases such as Morbus Alzheimer, diabetes mellitus type II, or myopathies.

View Article and Find Full Text PDF

Sialic acids (Sia) are widely expressed as terminal monosaccharides on eukaryotic glycoconjugates. They are involved in many cellular functions, such as cell-cell interaction and signal recognition. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), which catalyses the first two steps of Sia biosynthesis in the cytosol.

View Article and Find Full Text PDF

The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice.

View Article and Find Full Text PDF

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation.

View Article and Find Full Text PDF