Publications by authors named "W M Van Gulik"

It is common practice in the development of bioprocesses to genetically modify a microorganism and study a large number of resulting mutants in order to select the ones that perform best for use at the industrial scale. At industrial scale, strict nutrient-controlled growth conditions are imposed to control the metabolic activity and growth rate of the microorganism, thereby enhancing the expression of the product of interest. Although it is known that microorganisms that perform best under these strictly controlled conditions are not the same as the ones that perform best under uncontrolled batch conditions, screening, and selection is predominantly performed under batch conditions.

View Article and Find Full Text PDF

In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a high producing industrial strain of was investigated. Within a wide range of DO concentrations, obtained under chemostat conditions, we observed different responses from : (i) no influence on growth or penicillin production (>0.

View Article and Find Full Text PDF

Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions.

View Article and Find Full Text PDF

Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance.

View Article and Find Full Text PDF

Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast . This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism.

View Article and Find Full Text PDF