Bone matrix formation and mineralization are two closely related, yet separated processes. Matrix formation occurs first, mineralization is a second step strictly dependent on the dietary intake of calcium and phosphorus (P). However, mineralization is commonly used as diagnostic parameter for bone-related diseases.
View Article and Find Full Text PDFAtlantic salmon () is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a group of heritable disorders affecting bone and other connective tissues. Dominant OI forms are mainly caused by mutations in collagen type I. Patients suffer from skeletal deformities, fractures of long bones and vertebral compression fractures from early childhood onward.
View Article and Find Full Text PDFAtlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon.
View Article and Find Full Text PDFDietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation.
View Article and Find Full Text PDF