Publications by authors named "W Liebenberg"

Article Synopsis
  • * Despite its beneficial qualities, ivermectin has poor water solubility which limits its effectiveness when taken orally, prompting researchers to explore transdermal delivery methods using various nano-formulations.
  • * The study found that ivermectin-loaded nanoparticles successfully released the drug through the skin with minimal cytotoxicity, indicating that the choice of delivery vehicle significantly affects the drug's absorption and overall therapeutic potential.
View Article and Find Full Text PDF

Despite being discovered over five decades ago, little is still known about ivermectin. Ivermectin has several physico-chemical properties that can result in it having poor bioavailability. In this study, polymorphic and co-crystal screening was used to see if such solid-state modifications can improve the oil solubility of ivermectin.

View Article and Find Full Text PDF

The aim was to assess the suitability of three nano-based transdermal drug delivery systems containing ibuprofen: a nano-emulsion, a nano-emulgel, and a colloidal suspension with ibuprofen-loaded nanoparticles. Understanding the transdermal delivery of ibuprofen using nano-based drug delivery systems can lead to more effective pain relief and improved patient compliance. Characterization tests assessed the suitability of the developed drug delivery systems.

View Article and Find Full Text PDF

For the purpose of establishing the optimum processing parameters and storage conditions associated with nanolipid formulations of the artemisinin derivative artesunate, it was necessary to evaluate the thermal stability and solubility profiles of artesunate in aqueous solutions at various temperatures and pH. The effect of increased temperature and humidity on artesunate was determined by storing samples of the raw material in a climate chamber for 3 months and analyzing these by an established HPLC method. Artesunate remained relatively stable during storage up to 40°C ± 0.

View Article and Find Full Text PDF

Transdermal delivery of active pharmaceutical ingredients (APIs) can be challenging, since the skin possesses a rate-limiting barrier, which may be overcome when APIs possess certain ideal physicochemical properties. The lack thereof would require that APIs be included in drug delivery vehicles to enhance skin permeation. Hence, diclofenac was incorporated into various drug delivery vehicles (i.

View Article and Find Full Text PDF