We have identified and characterized three missense mutations in a patient with type 1 G(M1) gangliosidosis, namely a substitution of G for A at nucleotide position 1044 (G1044-->A; in exon 10) on one allele, which converts Asp(332) into asparagine, and both a mutation (C492-->A in exon 4, leading to the amino acid change of Arg(148)-->Ser) and a polymorphism (A1644-->G in exon 15, leading to a change of Ser(532)-->Gly) on the other allele. This patient had less than 1% residual beta-galactosidase activity and minimally detectable levels of immunoreactive beta-galactosidase protein in fibroblasts. To account for the above findings, a series of expression and immunolocalization studies were undertaken to assess the impact of each mutation.
View Article and Find Full Text PDFProcessing of human beta-galactosidase (beta-GAL) was studied in permanently transfected Chinese hamster ovary (CHO) cells and compared with that in normal cells and in cells from subjects with GM1-gangliosidosis, galactosialidosis and I-cell disease. Biosynthesis of beta-GAL in CHO cells results in the synthesis of an 88 kDa glycosylated and phosphorylated monomer precursor which is enzymically active and is secreted into the medium. Post-translational processing begins at the C-terminal end of the protein and gives rise to structurally related 67 and 64 kDa mature forms.
View Article and Find Full Text PDFGaucher disease (GD) is an inherited deficiency of beta-glucocerebrosidase (EC 3.1.2.
View Article and Find Full Text PDF