The development of a real-time system for characterizing individual biomolecule-containing aerosol particles presents a transformative opportunity to monitor respiratory conditions, including infections and lung diseases. Existing molecular assay technologies, although effective, rely on costly reagents, are relatively slow, and face challenges in multiplexing, limiting their use for real-time applications. To overcome these challenges, we developed digitalMALDI, a laser-based mass spectrometry system designed for single-particle characterization.
View Article and Find Full Text PDFAn accurate diagnosis is critical to reducing mortality in people with lower respiratory tract infections (LRTIs). Current microbiological culture is time-consuming, and nucleic acid amplification-based molecular technologies cannot distinguish between colonization and infection. Previously, we described developing a sampling system for effectively capturing biomolecules from human breath.
View Article and Find Full Text PDFLower Respiratory Tract Infections (LRTIs) represent the leading cause of death due to infectious diseases. Current diagnostic modalities primarily depend on clinical symptoms and lack specificity, especially in light of common colonization without overt infection. To address this, we developed a noninvasive diagnostic approach that employs BreathBiomics, an advanced human breath sampling system, to detect protease activities induced by bacterial infection in the lower respiratory tract.
View Article and Find Full Text PDFAims: Sub-therapeutic use of antibiotics as a growth promoter in animal diets has either been banned or voluntarily withdrawn from use in many countries to help curb the emergence of antibiotic-resistant pathogens. Probiotics may be an alternative to antibiotics as a growth promoter. We investigated the effects of a novel probiotic strain, Bacillus amyloliquefaciens H57 (H57) on the performance and microbiome-associated metabolic potential.
View Article and Find Full Text PDFDiagnosing respiratory tract infections (RTIs) in critical care settings is essential for appropriate antibiotic treatment and lowering mortality. The current diagnostic method, which primarily relies on clinical symptoms, lacks sensitivity and specificity, resulting in incorrect or delayed diagnoses, putting patients at a heightened risk. In this study we developed a noninvasive diagnosis method based on collecting non-volatile compounds in human exhaled air.
View Article and Find Full Text PDF