Publications by authors named "W Kruse"

The coronavirus pandemic has had a devastating impact on the demand for air transport. One passenger segment that has received relatively little attention is ageing passengers (defined as aged 65+), in spite of the fact that this group has been disproportionately affected by COVID-19, and in recent years has been viewed as a potential growth market. Therefore, the aim of this brief paper is to analyse the attitudes of ageing passengers by assessing air travel plans in the next 12 months, examining the factors influencing future flying decisions, and investigating the impact of the coronavirus pandemic on perceived risks and experiences associated with flying.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.

View Article and Find Full Text PDF

The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner.

View Article and Find Full Text PDF

G protein-coupled receptors are involved in the modulation of complex neuronal networks in the brain. To investigate the impact of a cell-specific G(i/o) protein-mediated signaling pathway on brain function, we created a new optogenetic mouse model in which the G(i/o) protein-coupled receptor vertebrate rhodopsin can be cell-specifically expressed with the aid of Cre recombinase. Here we use this mouse model to study the functional impact of G(i/o) modulation in cerebellar Purkinje cells (PCs).

View Article and Find Full Text PDF

Inherited loss of P/Q-type calcium channel function causes human absence epilepsy, episodic dyskinesia, and ataxia, but the molecular "birthdate" of the neurological syndrome and its dependence on prenatal pathophysiology is unknown. Since these channels mediate transmitter release at synapses throughout the brain and are expressed early in embryonic development, delineating the critical circuitry and onset underlying each of the emergent phenotypes requires targeted control of gene expression. To visualize P/Q-type Ca(2+) channels and dissect their role in neuronal networks at distinct developmental stages, we created a novel conditional Cacna1a knock-in mouse by inserting the floxed green fluorescent protein derivative Citrine into the first exon of Cacna1a and then crossed it with a postnatally expressing PCP2-Cre line for delayed Purkinje cell (PC) gene deletion within the cerebellum and sparsely in forebrain (purky).

View Article and Find Full Text PDF